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In the plane of two essential parameters of the problem, the region the necessary and (individually) sufficient conditions of stability 
of regular Grioli precessions in the problem of the motion of a heavy, dynamically asymmetrical rigid body about a fixed point 
is defined. The existence of periodic motions close to regular Grioli precessions is also proved. A method that requires only 
in solutions of the Cauchy problem to calculate the characteristic exponents of a reversible linear pkiodic system of order 
I+ II (f 3 n) is proposed, 63 2001 Elsevier Science Ltd. All rights reserved. 

1. THE STATEMENT OF THE PROBLEM 

In 1947, Grioli [l] discovered regular precessions of a heavy rigid body anchored at such a point that 
the following conditions are satisfied 

x,.,j--=z.,~, y,, =O, A> B>C (1.1) 

where ~0, ye, zo are the coordinates of the centre of gravity G of the body in a moving coordinate system 
C&z, with axes directed along the axes of inertia of the body for the fixed point 0, and A, B and C are 
the principal moments of inertia of the body about these axes. ‘Rvo remarkable features distinguish Grioli 
precessions. First they occur in a dynamically asymmetrical rigid body subject to conditions (1.1) only. 
Secondly, Grioli precessions do not occur about a vertical axis but about an axis inclined to the vertical 
at a certain angle p (Fig. 1). 

cosp = 
A-B+C 

$A-B)(B-C)+(A-B+C)~ (1.2) 

Here, the precession velocity oP is equal to the velocity of the eigen rotation of the body oo, and the 
angle between the axes of these rotations is a right angle. Furthermore, the axis of the eigen rotation 
passes through the centre of mass of the body. In Fig. 1, the ascending vertical y at the fixed point 0, 
the instantaneous angular velocity of the body o and also the vectors op and 00 are depicted at the 
instant of time when they belong to the same vertical plane II (the plane of the drawing). 

It can be seen from formula (1.2) that regular Grioli precessions are also possible for bodies for which 
the right-hand side of relation (1.2) is less than l/$2. In this case, the angle p > IT/~, and in Grioli motions 
the vector w spends the entire time on one side of the vertical plane that passes through the fixed point 
and is perpendicular to the plane II. For such bodies, the moments of inertia should obviously satisfy 
the condition 

(A-B)(B-C)>(A-B+C)2 0.3) 

In 1944, Gulyayev [2] found explicit formulae that describe the Grioli solutions 

p=?(x,-GcosT), q=nsinz, r=~(z()+x,cosl) 

n2 
YI =---#Cz,cosz+(B-C)x,sin’Tl 

r12 
y2 =---&(Ax~+Cr~)-(A-C)xozocos~lsin~ 

(1.4) 
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Fig. 1 

Y3 =~lA+,cosr+(A-8)70sin2T] 

I2 =x; +& T=nt-E++//, &=nt,, n* =P* 

wherep, q and r are projections of the instantaneous angular velocity w onto the axes of the Oxyz system 
yi, y2 and y3 are the direction cosines of the vector y, P = mg is the body weight, 1 is the distance from 
the fixed point 0 to the centre of mass G, it is the angular velocity of the eigen rotation, equal to the 
angular velocity of precession, and to is the time constant. It can be seen that, for a specified body with 
a fixed point satisfying the anchoring conditions (l.l), mechanically unique motion is possible in the 
form of a precession, described by formulae (1.4). 

When obtaining explicit expressions (1.4) we can correctly formulate the problem of the stability of 
regular Grioli precessions as the problem of the stability of the particular solution (1.4) of the system 
of Euler-Poisson equations describing the motion 

A:-(B-C)qr = P(zoY2 - Y0Y3h 
dY1 
x = Y2r- Y3q 

(P4r~ABCl~OYO~0,YIY2Y3) 

(1.5) 

when conditions (1.1) are satisfied. However, the problem is fairly complex. In fact, first, the equations 
of perturbed motion will be 27r-periodic in T, and an investigation even of the linear approximation is 
not feasible analytically. Second, we have a fairly singular problem in which the linear approximation 
contains a fourfold zero characteristic exponent with three groups of solutions. This follows directly 
from the first integrals of the Euler-Poisson equations - the energy and angular momentum integrals 
and the geometric integral 

Ap* + Bq* + Cr* + 2 P(xoyI + yoy2 + zoy3) = Zh(const) 

Apy, + Bqy, + Cry3 = o(const) (1.6) 

y:+y:+y: =I 

Furthermore, the presence of these zero exponents indicates the instability of the system of equations 
in variations, and it complicates the problem of the stability of regular Grioli precessions still further. 
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On the other hand, integrals (1.6) enable as in principle, to reduce the Euler-Poisson equations to 
a second-order system or to a single second-order differential equation. This system or equation is 
attractive in its low dimensional@ and contains no zero characteristic exponents governed by integrals 
(1.6). However, as a result, very complex equations are obtained [3, 41, and, furthermore, for these 
equations it is difficult to obtain explicit formulae describing the Grioli solutions. 

The circumstances indicated above lead to the idea that the solution of the problem of the stability 
of regular Grioli precessions must be sought by analysing the fairly simple system of equations (1.5), 
but bearing in mind in this case the conceivable possibility of reducing Eqs (1.5) to a second-order system. 
Another idea is to take into account the properties of reversibility possessed by system (1.3) when 
yo = 0. Strictly speaking, the system of Euler-Poisson equations is reversible when the body is anchored 
at any point 0. This is expressed in the invariance of system (1.5) under the replacement of (t, y, w) 
by (-t, y, -0). The property of reversibility is useful when examining periodic motions. For example, 
the periodicity of motion in which the angular velocity vanishes at least twice follows directly from the 
reversibility of the system of Euler-Poisson equations. 

Whenyo = 0, system (1.5) is also invariant under the replacement of (t, yl, ye, ys,p, q, r) by (3, yl, -y2, 
y3,p, -4, r). In other words, whenyo = 0, system (1.5) is a reversible mechanical system with the flxed point 
set M = {ri, y2, y3,p, q, r: y2 = q = O}, and precessions (1.4) constitute periodic motion that is symmetrical 
with respect to the fixed-point set M. Therefore, it is necessary not only to reduce the order of system (1.5) 
to two using integrals (1.6) but also to obtain a reduced periodic second-order system possessing the property 
of reversibility. It is then possible to use the well-known assertion [5] concerning Lyapunov stability, which 
nearly always occurs in the case of pure imaginary characteristic exponents, and the characteristic exponents 
can be calculated by analysing system (1.5) in the neighbourhood of solution (1.4). 

2. THE REDUCED SYSTEM 

The geometric integral will be taken into account by replacing the variables 

yI = sinecoscp, ‘I;! = sin%incp, y3 = case (0 < 8 < x) (2-l) 

Then, instead of three equations for yl, y2 and y3, we obtain only two equations 

e*=-+. cp’ = -03 + 0, ctge (sin 8 f 0) 

WI =pcoscp+qsincp, 6.r2 =-psincp+qcoscp, O3 =r 

Note that the angle 8 is the angle of nutation, while the angle cp in sum with the angle of eigen rotation 
gives IT/~. Furthermore, o1 and w2 are the projections of the angular velocity w onto axes rotated in 
the XY plane with respect to the x and y axes by an angle cp. 

We will transform the energy integral 

(Acos2 cp+Bsin’cp)of +(Asin2cp+Bcos2cp)o~ +(B-A)sin2cpw,02 +Coi + 

+2P(xosin8coscp+yosin8sincp+z,scos0)=2h 

and the angular momentum integral to new-variables. From the latter we find 

0, = 
a-(B-A)sin2cpsin8w2/2-C~3cos8 

(Acos2 cp+ Bsin2 cp)sin8 (2.2) 

and we substitute it into the energy integral. As a result, we obtain a quadratic equation for determining 
03, from which we find 

w3 = F&J= (2.3) 

F=Cacos& S=(J(Acos2q,+Bsin2cp)sin28+Ccos28] 

R=02 -(B-A)2sin2cpcos2cpsin280~+2[P(xosin8coscp+yosincp+~cos8)-h]x 

x(Acos2(p+Bsin2(p)sin28 



814 V N. Tkhai 

As a result of these calculations, the projections w1 and o2 are expressed by means of formulae (2.2) 
and (2.3) as functions of cp, 8 and w2. Therefore, the reduced third-order system has the form 

de 
-=-_o do2 - = Q*(q$em,), 4 

dt 2’ dt 
-$ = -w,(cp,8,w,~+~,(cp.~.~,~~~g~ (2.4) 

n, = 
[ ( -0, + yqsincp+ypcoscp)wX - 

-$r,csint3sincp-y,cos~)sincp+~(~0cos~-zasineCos(P)Cos~ 
I * 

(the asterisk denotes that, on the right-hand sidep, q, w1 and o3 are replaced by their expressions in 
terms of ‘9, 0, w2). Here, the right-hand sides of system (2.4) will be 2T-periodic in the angle cp and, 
furthermore, depend on the constants of energy, h, and kinetic moment, u. 

System (2.4) obviously describes motions in which sin 8 f 0. 

rf 
We will now consider regular Grioli precessions. From formulae (1.4) it can be seen that 
+ rz # 0. In fact, when -yt + rz = 0, it is necessary to have sin T f 0 and cos T f 0. However, the 

expressions in square brackets in the formulae for y1 and y2 cannot then vanish simultaneously, since 
xazo > 0 and (4 -B)(B - C) > 0. 

Thus, on regular Grioli precessions we have sin 8 # 0. It is obvious that sin 8 f 0 is also observed 
in motions close to regular Grioli precessions, i.e. in perturbed motions. 

We will calculate 

Y;Y, - Y2Yi = -n2rf!m+ f2(w(~2~s) (2.5) 

A(z)= [(Ax; +C&, -(f3-C)12xocos~s]C 

When jzo 1 > Ix0 I, the sign of f2(T) is the same as the sign of the number zo, but, when z. = x0, f2(7) 
vanishes only when sin T = 0. Furthermore, conditions (1.1) enable as to transformfi (7) into 

fi(z)=CqJ*(~), f*(+(A-B+C)-,/(A-B)(B-C)cosz 

andf,(~) has the sign of the number z. if 

A-B+C>$A-@(B-C) (2.6) 

Inequality (2.6) is exactly opposite to inequality (1.3). Therefore, geometrically condition (2.6) means 
that the angle between the vertical and the axis of precession does not exceed 1r/4. We will show here, 
however, that, when x0 = zo, we have A + C = 2B and condition (2.6) is satisfied. 

Thus, on regular Grioli precessions, for which the angle formed by the axis of precession with the 
vertical does not exceed 1r/4 and, furthermore, Izo I > 1x0 I , the angle (p changes monotonically, as follows 
from (2.5). Consequently, when solving the problem of the stability of such precessions, it is possible 
to use a second-order periodic system. This system is derived directly from (2.4) if the angle cp is selected 
as the new “time”. 

Let the second-order system obtained be stable with respect to the variables 0 and oP In this system, 
the perturbed and the unperturbed solutions are compared for the same values of cp, which in the general 
case are reached at different instants of time. Therefore, from the formulae for the transition to the 
variables Q, 8, wl, w2 and w3 it follows that the stability of the reduced second-order system means the 
stability of system (1.5) with respect to the variables $ + -$, y3,p2 + q2 and r. 
Formulae (2.1), and also the expressions for wl, w2 and w3, indicate that, when the sign of y2 and q 
changes, the sign of the angle Q and of the projection w2 also changes. In this case, as can be seen from 
(2.4), the expression for sl, retains its sign. Therefore, system (2.4) is invariant under to the replacement 
of (t, Q, 6 02) bY c-4 -Q, 8, -w2). This means that the second-order periodic system obtained from 
(2.4) does not change when (Q, 8, w2) is replaced by (-Q, 0, -w2) and it is a reversible system. 

We will now examine Grioli precessions for bodies for which lxol > Izo I. In this case, we have 
A -B > B - C, and condition (2.6) is satisfied. Therefore, on Grioli precessions, the angle p < 7r/4. 
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Then, as in the previous case, from formulae (1.4) we derive ~4 + ~5 f 0. Therefore, if the 
transformation 

y, =cosO, y2 =sinBsincp, y3 =sinBcoscp 

is carried out, then, on Grioli precessions, we will have sin 6 # 0. Now we will calculate 

y;y3 - Y 2y; = n2u#) + f4Wl 4p2h 

f;(z) B [Ax; + Cz,&, -(A - BV2z,-, coszlA 

f4(2) z (A - C)(B- C)z~(q, - ~0 cosz)sin2 I: 

(2.7) 

and heref3 (T) is transformed into&of*(r). Therefore, when Ix0 1 > Izo I, expression (2.7) has the same 
sign and the angle cp changes monotonically. 
We will derive equations for the variables 

B,cp,w, = p, o2 = -rsinrp+qcoscp, w3 = rcoscp+qsincp 

and, using the energy and angular momentum integrals, we will reduce the system obtained to a third- 
order system for the variables 8, cp and oz. Finally, taking the inequality cp* # 0 into account, we will 
obtain a periodic reversible second-order system. These calculations were carried out in detail above 
for the case when 12s 1 B Ix,, I. 

We will now summarise the conclusions of this section. 

Lemma 1. The problem of the stability of regular Grioli precessions, in which the angle which the 
axis of precession makes with the vertical does not exceed IT/~, correctly reduces to the problem of the 
stability of a periodic reversible second-order system of the form (2.4). Here, the Lya 

B 
unov stability of 

this system means the stability of system (1.5) with respect to the variables rf + ~2, ~3, p2 + q2 and 
r when 1,~ 1 3 Ix0 I and with respect to the variables yl, -&, + y$,p and q2 f 12 when Ix0 I P Izo I, provided 
the constants of the energy and angular momentum integrals are not disturbed. 

3. CALCULATION OF THE CHARACTERISTIC EXPONENTS 
OF THE REVERSIBLE SYSTEM 

Let us return to the problem of the characteristic exponents (CEs) for a linear, 2v-periodic reversible 
system 

u’ = A_(t)u + A+(t)v 

v’=B+(t)u+B_(r)v, UEIW’, veW”(l,n) (3.1) 

(the plus or minus sign denotes a matrix consisting of even or odd functions). It is clear that 
system (3.1) is invariant under each of the two transformations: a) (t, u, v) + (-t, u, -v); 
b) (6 u, v) + (-t, -u, v). The sets Mi = {u, v : v = 0) and M2 = {u, v: u = 0) (u = 0) are referred 
to as fired-point sets of reversible system (3.1). 

The property of invariance under these transformations leads to the fact that system (3.1), together 
with each solution u = u(t), v = v(t), also has the solutions u = u(-t), (v = -v(-t) and u = -u(-t), 
v = -v(-t). The reflexivity of the characteristic equation for system (3.1) is derived directly from this. 
The linearity of system (3.1) implies that the following solutions exist 

u = u(r) + I+?), v = v(r) - v(-t) 

u = u(t) - u(-r), v = v(r) + v(-1) 
(3.2) 

In the first of these solutions we have u = 0 when t = 0, and in the second solution -v = 0 when 
t = 0. Solutions (3.2) are symmetrical with respect to the sets Mi and M2 respectively. 
When the condition of uniqueness of the solution of system (3.1) is satisfied, taking solutions (3.2) into 
account we derive the fundamental matrix of solutions 
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(the matrices u’(t) and v’(t) consist of even functions, the matrices u-(t) and v-(t) consist of odd 
functions and 1. is the identityj-matrix) with the identity matrix of the initial conditions. 

The rank o# the matrix v-(t) does not exceed n. This means that, as a result of elementary 
transformation, Z-n columns of the matrix V-(T) become zero. Then, from the condition rank 
V-(T) < n it follows [6] that in (3.1) at least Z-n 2T-periodic solutions exist that are symmetrical with 
respect to the set Ml. 

Thus, the periodic reversible system (3.1) has at least Z-n simple zero CEs. The remaining CEs are 
divided into pairs + x. 

We will use p to denote the eigenvalue of the matrix S(~P). Then, the matrices S( -2~) = S-‘(2~) 
and 2s = S(~IT) + S( -21r) have eigenvalues equal respectively to p-l and 2a .= p + p . The explicit 
form of the matrices S(21r) and S(-2~) enable as to calculate 

On the other hand 

de@ - aI,+,) = det(u+(2rc) - aI,)det (v+(270 - @I,,) (3.3) 

det(S - al,,,,) = c(a - I)‘-“Pi, c = const (3.4) 

(where P,, (0~) is the nth polynomial in OL), or the matrix S has at least Z-n eigenvalues, equal to unity, 
and each of the remaining eigenvalues has an even multiplicity. In the case of simple roots of the 
polynomial 

Q,,(a) = det(v+(2@-aI,) 

from (3.3) and (3.4) we directly derive 

Q,,(a) = cl P,(a). cl = const (3.5) 

However, if Q, (a) has a root of multiplicity k, then S has an eigenvalue of multiplicity UC, and P,(a) 
has root of multiplicity k. Consequently, in this case we also have (3.5). 

Lemma 2. The linear, 27r-periodic reversible system (3.1) has at least Z - n simple zero CEs. All the 
remaining CEs are divided into pairs t x and are defined by the formulae 

x=kArcha, det(v+(2lt)-c&)=0 

CoroZZary. If the roots of the polynomial Q,(a) are real and do not exceed unity in modulus, then all 
the CEs have zero real parts. 

Remark. The following conclusion can be drawn from Lemma 2: to calculate the CEs of a reversible 
linear periodic (Z + n)th-order system (Z 2 n), it is sufficient to construct only n particular solutions of 
the Cauchy problem in the segment [0,2n]. 

4. ANALYSIS OF THE SYSTEM OF EQUATIONS IN VARIATIONS 

We will change in the Euler-Poisson equations to dimensionless projections of the angular velocity 

P * = pln, q* = qfn and r* = r/n and introduce the dimensionless parameters 

a=Al(A+C), c=l-a, b=a+(l-2a)h*, h=x,lZ, v=q,jZ, p=dm 

Then, in the system obtained, the Grioli precessions are given by the formulae 

P’ =I.-Vcos5 9* =sinT, r’=v+hcosT 
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YI = -tcvcosr+(b-c)hsi”*z]/~ 

y2 =[(ah2+cv2)-(a-c)hvcosz]sinT/p 
(4-I) 

y3 =[ahcos~+(a-c)vsi”*z~/~ 

and this system contains only two essential parameters: a and X(1/2 c a c 1, -1 C X s 1). 
We will now compile equations in variations for solution (4.1), putting II = (I$*, 6r*, 6~1, Gyz)’ and 

v = (IN*, h21T , w h ere T stands for transposition. As a result, we have the system 

u; =(b-C)/a(q*u*+r*u,)+(~/a)Vv2 

u; =((u-6)/c)(q’u,+p*u,)-(~Lc)hu2 

u;=y2u2-q*uq-yyyI+r*v2 

u4 * = -y*uI + q*ug + y;u , - p*u* 

U; =((c-u)lb)(r*u, +p*U*)-(~Ib)(VU3_XU4) 

u; = y3ul -y,u, - r*u3 + p*uq 

(4.2) 

i.e. a system of the form (3.1) with the vectors II and v of dimensional@ 2 = 4 and n = 2 respectively. 
Consequently, system (4.2) has at least two simple zero CEs. Moreover, because the Euler-Poisson 
equations possess three first integrals, system (4.2) has a further pair of zero CEs with the unique group 
of solutions. 

To calculate the remaining pair of CEs, we will use Lemma 2. In the segment [0,2n] we will construct 
two solutions of the Cauchy problem with the initial conditions: 1) u(O) = 0, vi(O) = 1, u*(O) = 0 and 
2) u(O) = 0, vi(O) = 0, y(O) = 1. As a result, we form the matrixv+(2v) = ]]u$(2~) ]I. We then determine 
the roots a of the quadratic equation 

(4.3) 

and the CEs -C x, x = Archorl(2rr)In this case, Eq. (4.3) has one root a = 1. Therefore, it is necessary 
to determine only the second root, equal, by Vistas theorem, to 

a=u,+,(2n)+u,+,(27c)-I (4.4) 

We find the number a from formula (4.4). Then, the condition I (Y I s 1 determines the pure imaginary 
CEs k x, which in this case are calculated by the formula x = arccosa/(2T). 

The system of Euler-Poisson equations contains, in the Grioli case, only two essential parameters 
a and A, which vary in the rectangle (Fig. 2). For each point of this rectangle, we calculate a and single 
out the region in which the CEs are pure imaginary. In this case, it is obviously sufficient to carry out 
calculations only for X L 0 or A 5 0. In Fig. 2, the region where the CEs have non-zero real parts is 
shaded. 

5. RESULTS 

In the system of equations in variations (4.2), the angle Q, if it is used as the “time”, changes in the 
same way as in Grioli precessions 

cp= z+@(r), @@+2x)= Q(2) (5.1) 

and here I@. I < 1, if the angle p between the axis of precession and the vertical does not exceed n/4. 
In the latter case, relation (5.1) enables as to express r in terms of cp. Therefore, from the pair of pure 
imaginary CEs of system (4.2) it follows that the unique pair of CEs of the reduced second-order system 
will also be pure imaginary. In the plane (A, a), the condition l3 < IT/~ takes the form (h ) 0) 

(1 -u)l(2u- I)>&/1 -A? -h) (5.2) 



818 V N. Tkhai 

Fig. 2 

This condition is satisfied in Fig. 2 in the region D (below the are IJ. In the region D, Lyapunov stability 
follows from the pure imaginary characteristic exponents (regions S of light background). For this, it 
is necessary to exclude the resonances px = 1, p = 1, 2, 3, 4 (the corresponding values ofp in Fig. 2 
are indicated) and require that the one coefficient C(X, a) does not vanish in the third-order forms of 
the normalized system (for a system of form (2.4)). The third-order forms in system (2.4) do not vanish 
identically. In the normalized system, then, we almost always have C(h, a) f 0. 

Theorem 1. Regular Grioli precessions are Lyapunov-unstable for all points of the region IS (shaded 
in Fig. 2). In the region D lying below the are r, the angle between the axis of precession and the vertical 
does not exceed 45” and the regular Grioli precessions are Lyapunov-stable for almost all points of the 
region S (light background, Fig. 2). Possible exceptions are the resonance curves, and also the points 
at which C(X, a) = 0. 

Lyapunov stability is obtained from the theorem formulated. Even though it would appear that the 
reduced reversible second-order system contains constants of the energy and angular momentum 
integrals and the stability exists if and only if their values are fixed (conditional stability). However, a 
study recently carried out [7] showed that, in the case of symmetrical integrals (such as the energy and 
angular momentum integrals). Lyapunov stability is obtained. 

The calculations carried out in Section 4 to determine the CEs also enable as to solve the problem 
of the existence in a heavy rigid body with one fixed point of periodic motions close to regular Grioli 
precessions. Here, two statements of the problem are possible. 

Suppose, as before, that conditions (1.1) are satisfied. The Grioli precessions constitute symmetrical 
periodic motion (SPM) of a reversible mechanical system and, in the general situation, belong to a family 
[8]. By virtue of the existence of energy and angular momentum integrals with arbitrary (non-fixed) 
constants, we would expect this to be a two-parameter family. The problem of the existence of a family 
can be reduced to the problem of the existence of a local family of SPM in the system of equations of 
perturbed motion. By introducing a small parameter, the latter problem is reduced to the problem 
of continuation with respect to the parameter and is solved [6] in approximate cases by the system of 
equations in variations. 

In the second problem, we assume that yo = 0, and that the condition 

xo~liz = z,Jxs (5.3) 

is satisfied with some accuracy characterized by the small parameter E. Then, with e = 0, we have regular 
Grioli precessions, but when E # 0 the existence of SPM is shown by continuation with respect to the 
parameter E of solutions (1.4). In structurally stable cases, this problem is also solved [6] by the system 
of equations in variations. 

The system of equations in variations (4.2) has a fourfold zero CEs with three groups of solutions. 
Taking into account that these zero CEs are due to the three first integrals (1.6), we conclude that the 
zero CEs do not prevent continuation of the solutions (1.4). 
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Therefore, if the remaining pair +- x satisfies the condition x # i k (k E Z ), the problem of continuation 
has a positive solution [6]. 

Theorem 2. For almost all values of the parameters, the regular GrioIi precessions belong to a two- 
parameter family of SPM of the system of Euler-Poisson equations. This family exists in the Grioli case 
(1.1) and extends to the case when condition (5.3) is satisfied with a certain accuracy, and ys = 0. 

The existence of Grioli precessions was established [l, 21 when conditions (1.1) were satisfied. 
However, a careful reading of [l, 21 shows that the precessions described by formulae (1.4) also exist 
for bodies subject, instead of conditions (l.l), to the conditions 

x,,j===-zO~~. y,,=O, A>B>C V-4) 

which differ from (1.1) in that the signs ofxa andzo are opposite to each other. It can also be seen that 
the derivation of the results set out above concerning stability and periodic motions remains valid for 
bodies subject to conditions (5.4). Therefore, the following theorem holds. 

Theorem 3. Theorems 1 and 2 remain valid if the body obeys conditions (5.4) rather than conditions 
(1.1). 

I wish to thank V V Rumyantsev, who drew my attention to the problem, and also V. V. Beletskii 
for his interest. 
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